Bayesian Inference in Reducible Stochastic Differential Equations

نویسندگان

  • Ludovic GIET
  • Michel LUBRANO
چکیده

The linear Ornstein-Ulenbeck diffusion model is too simple to describe the movement of short term interest rates. However diffusions with a non-linear drift and volatility function have no closed form likelihood function which make inference either classical or Bayesian very problematic. A vast range of approximation were proposed in the literature. In this paper, we develop the idea of a non-linear diffusion model, which after transformation can be reduced to an Ornstein-Uhlenbeck. At the price of a constrained drift function, we get a model equipped with a closed form likelihood function. We test this class of models on the the US Federal fund rate data. We propose a Bayesian approach to compare the performance of various specification of the volatility function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulating Exchange Rate Volatility in Iran Using Stochastic Differential ‎Equations‎

‎The main purpose of this paper is to analyze the exchange rate volatility in Iran in the time period between 2011/11/27 and 2017/02/25 on a daily basis. As a tradable asset and as an important and effective economic  variable, exchange rate plays a decisive role in the economy of a country. In a successful economic management, the modeling and prediction of the exchange rate volatility is esse...

متن کامل

Variational Bayesian Inference for Partially Observed Diffusions

In this paper the variational Bayesian approximation for partially observed continuous time stochastic processes is studied. We derive an EM-like algorithm and give its implementations. The variational Expectation step is explicitly solved using the method of conditional moment generating functions and stochastic partial differential equations. The numerical experiments demonstrate that the var...

متن کامل

Variational Bayesian inference for partially observed stochastic dynamical systems

In this paper the variational Bayesian approximation for partially observed continuous time stochastic processes is studied. We derive an EM-like algorithm and describe its implementation. The variational Expectation step is explicitly solved using the method of conditional moment generating functions and stochastic partial differential equations. The numerical experiments demonstrate that the ...

متن کامل

Stochastic differential inclusions of semimonotone type in Hilbert spaces

In this paper, we study the existence of generalized solutions for the infinite dimensional nonlinear stochastic differential inclusions $dx(t) in F(t,x(t))dt +G(t,x(t))dW_t$ in which the multifunction $F$ is semimonotone and hemicontinuous and the operator-valued multifunction $G$ satisfies a Lipschitz condition. We define the It^{o} stochastic integral of operator set-valued stochastic pr...

متن کامل

Numerical solution of second-order stochastic differential equations with Gaussian random parameters

In this paper, we present the numerical solution of ordinary differential equations (or SDEs), from each order especially second-order with time-varying and Gaussian random coefficients. We indicate a complete analysis for second-order equations in special case of scalar linear second-order equations (damped harmonic oscillators with additive or multiplicative noises). Making stochastic differe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004